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Abstract 

Background  Paratuberculosis (PTB), caused by Mycobacterium avium subsp. paratuberculosis (MAP), is difficult 
to diagnose in the early stages and poses substantial challenges in prevention, control, treatment, and eradication. 
A well-defined animal model can help identify disease markers and serve as a platform for vaccine and drug develop-
ment. This study used sheep as a ruminant model for experimental MAP infection research.

Methods  Nine 3-month-old lambs with negative MAP antigen and antibody were divided into three groups (control 
group A and inoculated groups B and C). The inoculated groups were challenged with sheep-derived type II MAP. 
After exposure, we recorded clinical signs, assessed fecal shedding, tested blood MAP levels, and performed fecal 
cultures. We also measured MAP-specific antibodies and monitored IFN-γ and IL-10 responses in vivo. At 255 days 
after inoculation, we performed autopsy, tissue culture, pathomorphological observation, and bacterial organ burden 
(BOB) testing.

Results  All six sheep in groups B and C were infected, regardless of the challenge dose and exhibited emaciation; 
two had intermittent soft stools. Intermittent MAP shedding in feces was observed from 60 to 255 days after expo-
sure. Typical MAP colonies formed after 4–6 weeks of fecal and tissue culture, and Ziehl–Neelsen staining showed 
positive results. In the groups challenged with MAP, some blood samples tested positive for MAP and MAP-specific 
antibodies were detected in some serum samples. IFN-γ response was significantly higher in groups B and C 
than that in group A from day 60 post-exposure, whereas the IL-10 response was higher than that in group A from day 
120 post-exposure. In the infected groups, the ileal lesions were the most severe and were classified as grade 3 PTB 
granulomatous inflammation (multibacillary lesions). BOB levels varied across different tissues.

Conclusions  To the best of our knowledge, this is the first experimental MAP challenge study on sheep in China. 
Polymerase chain reaction detection was more sensitive than MAP culture, whereas enzyme-linked immunosorbent 
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assay was less sensitive for detecting MAP-specific antibodies. IFN-γ and IL-10 responses may serve as targets for mon-
itoring PTB progression. The severity of ileal lesions and acid-fast bacilli grading play crucial roles in the understanding 
of infection dynamics. Currently, early PTB diagnosis requires a combination of multiple sample types and detection 
methods.
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Introduction
Paratuberculosis (PTB) is a chronic infection primarily 
caused by Mycobacterium avium subsp. paratubercu-
losis (MAP) in wild and domestic ruminants. It leads to 
mesenteric lymphadenitis and granulomatous enteritis, 
followed by weight loss, diarrhea, and eventual death [1]. 
Animals are typically infected at a young age by ingestion 
of fecal-contaminated material, milk, or colostrum, either 
via in utero transmission or neonatal exposure [2]. The 
fecal–oral route is the primary mode of MAP transmis-
sion [3]. PTB is widespread across multiple countries and 
is considered a significant disease owing to its economic 
impact, effects on animal welfare, and public health con-
cerns [4]. Moreover, MAP is a zoonotic pathogen that 
threatens human health [5] and enters the human food 
chain through contaminated meat [2], dairy products [6], 
and untreated water [7].

Core genome analysis has revealed two distinct MAP 
lineages: types S (sheep strain) and C (cattle strain or type 
II). Type S includes two sublineages, types I and III, and 
the Bison type is a distinct clade within type C; however, 
these are not different strain types of MAP [8–13]. Type 
S strains exhibit slow growth (≥ 16 weeks) and are closely 
associated with sheep sources, whereas type C strains 
grow more rapidly (4–16 weeks) and, although com-
monly found in cattle, have a broader host range [14]. 
Virulence differs between type S and C strains depend-
ing on the host species [15]. Infection of sheep with type 
S strains results in granulomatous lesions confined to 
lymphoid tissue, with no difference in lesion intensity 
over time. Conversely, infection with type C field strains 
initially causes diffuse lesions, which decrease in sever-
ity with prolonged infection duration (150–390 days) and 
become well-demarcated granulomas with fibrosis [16, 
17].

The development of experimental infection models 
can help understand the dynamics of MAP infection 
and disease progression [3]. Previously, countries where 
ovine PTB posed a significant challenge have developed 
various experimental animal models. These models have 
been established in the USA (cattle [18–24], sheep [18, 
25], murine [26–29], rabbit [30], and deer [25]); the UK 
(cattle [31, 32], sheep [33–35], and hamsters and rabbits 
[36]); South Korea (cattle [37] and murine [38]); Australia 
(sheep [39–43], cattle [44, 45], and rabbit [46]); Argentina 

(cattle [47–49] and murine [50, 51]); Canada (cattle [52, 
53], sheep [54], murine [55, 56], and rabbit [57]); New 
Zealand (sheep [58, 59, 60]); Spain (sheep [17, 61–64] 
and rabbit [65–67]); Germany (sheep [68, 69]); Denmark 
(sheep [70]); Japan (murine [71]); India (cattle [72], sheep 
[73], and murine [74]); Iran (sheep [75]); the Netherlands 
(sheep [76]); and Italy (sheep [77]). To the best of our 
knowledge, no relevant studies have been conducted in 
China. This study aimed to conduct animal experiments 
on sheep challenged with a type II MAP strain, provid-
ing a foundation for further studies on PTB pathogenesis, 
early diagnosis, and control strategies.

Materials and methods
Experimental animals
Nine 3-month-old small-tail Han sheep (five males and 
four females) sourced from a sheep farm in Hohhot, Inner 
Mongolia, China, were selected for this study. The farm 
consistently tested negative for PTB based on multiple 
tests conducted in our laboratory over the past 3 years. 
No sheep in China were immunized with a PTB vaccine, 
and the farm did not administer brucellosis vaccination. 
Before selecting the experimental animals for this study, 
20% (60/300) of the farm’s sheep were randomly tested. 
First, blood samples were collected via the jugular vein, 
and fecal samples were collected from the rectum. These 
samples were analyzed for MAP-specific antibodies and 
antigens (IS900 gene) using enzyme-linked immuno-
sorbent assay (ELISA), DNA extraction, and polymerase 
chain reaction (PCR) [78, 79], following the manufac-
turer’s protocols for ID Screen® Paratuberculosis Indirect 
Screening Test (ID Vet, Montpellier, France), E.Z.N.A 
Stool DNA Kit (Omega BioTek Inc., Norcross, GA, USA), 
and Premix Taq™ (TaKaRa Taq™ Version 2.0 plus dye) 
(TaKaRa, Beijing, China). Second, we performed serum 
screening for brucellosis using the plate agglutination 
test (GB/T 18646-2018, national standard, China), tube 
agglutination test (GB/T 18646-2018, national stand-
ard, China), and indirect ELISA (Laipson, Luoyang, 
China). Third, genomic DNA was extracted from antico-
agulated blood and throat swabs using the TaKaRa Min-
iBEST Universal Genomic DNA Extraction Kit Ver. 5.0 
(TaKaRa) and screened for Mycobacterium tuberculosis 
using a real-time PCR kit (Anheal, Beijing, China), along 
with fecal DNA analysis. After confirming that all tested 
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sheep were negative for PTB, brucellosis, and tuberculo-
sis, nine 3-month-old lambs were selected and housed 
in an experimental animal facility for adaptive feeding. 
They were fed lamb feed and lucerne at regular, quantita-
tive intervals each day and were subsequently dewormed. 
One week later, they were retested for PTB, brucellosis, 
and tuberculosis. After confirming the negative results, 
further animal experiments were initiated. Three groups 
of sheep were housed under identical conditions in iso-
lation. No experimental animals received antibiotics or 
immunosuppressive drugs.

MAP preparation and animal grouping for the challenge
MAP was cultivated, identified, and stored at −80°C in 
our laboratory. A third-passage culture of a type II MAP 
strain (MAP-NM5), originally isolated from ovine intes-
tines, was used as the inoculum. The seed stock was 
transferred to 7H9 liquid culture medium (Middlebrook, 
Becton Dickinson, NJ, USA), supplemented with glyc-
erin (Merck, Darmstadt, Germany), Middlebrook OADC 
(Middlebrook), and Ferric Mycobactin J (MYCO, ID Vet). 
The culture was incubated at 37°C with continuous shak-
ing at 160 rpm for 67 days. Optical density at 600 nm 
(OD600) was measured using an ELISA reader (BioTek 
Instruments, Inc., VT, USA), and culturing was stopped 
once the bacterial count reached 107  CFU/mL. Subse-
quently, experimental animals were prepared for inocu-
lation. Batch suspensions were confirmed to contain 
acid-fast bacilli (AFB) via Ziehl–Neelsen (ZN) staining, 
and the presence of MAP was verified using PCR, follow-
ing the aforementioned method.

Nine lambs were randomly assigned to three groups 
for the MAP challenge: control group A (n = 3; males: 
2, female: 1; numbered 1–3), inoculated group B (n = 3; 
males: 3; numbered 4–6), and inoculated group C (n 
= 3; females: 3; numbered 7–9). For 4 consecutive days, 
the inoculated groups were orally inoculated with MAP. 
Each sheep in group C received approximately 2.57 
× 109 CFU of live bacteria, whereas each sheep in group 
B received approximately 9.2 × 108  CFU. Control group 
A was administered an equivalent volume of 7H9 liquid 
culture medium. Post-exposure time was defined as the 
time elapsed from the date of the first MAP inoculation.

Post‑exposure detection
Following the MAP challenge, the clinical symptoms 
of all experimental animals were monitored daily. Fecal 
samples were collected from the rectum of each sheep 
daily during 1–3 days post-exposure. Due to COVID-19 
management policies in China, sheep no. 3 from con-
trol group A died on day 27 post-exposure, and led to 
a modification of the sampling schedule. From day 60 
post-exposure, fecal samples were collected from the 

rectum and blood was drawn from the jugular vein at 
15-day intervals for serum separation. The methods used 
for DNA extraction and MAP detection in whole blood 
and fecal samples as well as for MAP-specific antibody 
detection in serum were the same as those used during 
experimental animal selection. Serum interferon-γ (IFN-
γ) and interleukin-10 (IL-10) levels were measured using 
the Sheep IFN-γ ELISA Kit (BlueGene Biotech, Shanghai, 
China) and Sheep IL-10 ELISA Kit (BlueGene Biotech), 
according to the manufacturer’s protocols.

The experiment was terminated at 255 days post-expo-
sure, after which the lambs were euthanized and necrop-
sied. Gross lesions examined across various organs and 
tissue samples, including intestinal and mesenteric lymph 
nodes, were collected. For histopathological examina-
tion, tissue samples were fixed in 10% neutral forma-
lin, embedded in paraffin, sectioned, and stained using 
hematoxylin–eosin (HE) and ZN staining. The tissue 
used for electron microscopy was fixed in 2.5% glutaral-
dehyde, and ultra-thin sections were prepared by Saixin 
Natural Gene Technology (Beijing, China). For bacte-
rial organ burden (BOB) detection, DNA was extracted 
using the TaKaRa MiniBEST Universal Genomic DNA 
Extraction Kit Ver. 5.0 (TaKaRa). Fluorescent quantita-
tive PCR was performed using TB Green® Premix Ex 
Taq™ II (Tli RNaseH Plus) (TaKaRa). Primers were F1 
(AAT​GAC​GGT​TAC​GGA​GGT​GGT) and R1 (GCA​GTA​
ATG​GTC​GGC​CTT​AC). The BOB results were analyzed 
using one-way analysis of variance with 95% confidence 
intervals. Two-tailed p-values <0.05 were considered sta-
tistically significant. Data were visualized using Prism 8 
(GraphPad, USA).

At each experimental stage, fecal samples were col-
lected, and tissue samples were obtained during necropsy 
for MAP culture [68]. Following bacterial culture, DNA 
was extracted using the TaKaRa MiniBEST Bacteria 
Genomic DNA Extraction Kit Ver. 3.0 (TaKaRa) follow-
ing the manufacturer’s instructions. PCR was performed, 
and all PCR-positive products were sequenced by San-
gon Biotech (Shanghai, China). The sequencing results 
were compared with those of the inoculated MAP strain 
(MAP-NM5). Additionally, colony smears were prepared 
and subjected to ZN staining.

Results
Clinical signs
Compared with group A, sheep in groups B and C exhib-
ited slower growth rates. At the end of the experiment, 
the animals were significantly emaciated with dry and 
dull fur, particularly sheep no. 9. Additionally, sheep nos. 
5 and 7 experienced intermittent fecal softening, wherein 
feces failed to form granules and instead turned into 
lumps.
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Fecal shedding
Overall, 139 fecal samples were collected post-exposure 
(17 time points × 8 surviving sheep + 3 accidental deaths 
of sheep). PCR analysis confirmed that all group A fecal 
samples were negative for MAP, whereas those from 
groups B and C at 1–3 days post-exposure were positive. 
From 60 days post-exposure, fecal samples were collected 
at 14 regular intervals, which revealed intermittent MAP 
shedding. Fecal shedding detection rates in sheep nos. 
4–9 were 42.86% (6/14), 57.14% (8/14), 21.43% (3/14), 
64.29% (9/14), 57.14% (8/14), and 64.29% (9/14), respec-
tively. Fecal shedding was first detected at 60 days post-
exposure (Table 1).

Fecal and tissue culture
A total of 14 samples (including 8 MAP-positive sam-
ples based on PCR) were collected from sheep nos. 5 
and 9 at 60, 75, 90, 105, 120, 135, and 150 days post-
exposure, along with 16 tissue samples (ileum and 
mesenteric lymph nodes) from eight sheep. After 4–16 
weeks of cultivation, MAP colonies were observed in 
four fecal samples: sheep no. 9 at 75 days (culture time: 
4  weeks), 105 days (6 weeks), and 150 days (6 weeks) 
post-exposure and sheep no. 5 at 120 days post-expo-
sure (6 weeks). Additionally, seven tissue samples tested 

positive: the ileum of sheep no. 4 (4 weeks), the ileum 
of sheep nos. 5, 7, 8, and 9 (6 weeks), and the mesen-
teric lymph nodes of sheep nos. 8 and 9 (6 weeks). The 
colonies appeared nipple-shaped, with irregular edges, 
a smooth surface, and a creamy or pale yellow color. 
ZN staining confirmed a short rod-shaped AFB with 
consistent morphology and size (Fig.  1). PCR amplifi-
cation of the colonies revealed positive results, and the 
sequencing results matched the challenge strain (MAP-
NM5) gene sequence.

MAP detection in whole blood
Overall, 112 blood samples (14 time points × 8 sheep) 
were collected post-exposure. All group A samples 
were PCR-negative for MAP, whereas some samples 
in groups B and C tested PCR-positive for MAP. MAP 
was detected in sheep no. 4 (once at 105 days post-
exposure), sheep no. 5 (once at 60 days post-exposure), 
sheep no. 6 (twice at 105 and 180 days post-exposure), 
sheep no. 7 (four times at 105, 135, 150, and 165 days 
post-exposure), sheep no. 8 (thrice at 105, 120, and 135 
days post-exposure), and sheep no. 9 (twice at 105 and 
120 days post-exposure) (Table 1).

Table 1  MAP-specific antibodies in serum and MAP antigen detection in feces and blood

"+" represents positive

"–" represents negative

"*" represents not sampled

Days post inoculation (d) Fecal samples Blood samples Serum samples

Group B Group C Group B Group C Group B Group C

4 5 6 7 8 9 4 5 6 7 8 9 4 5 6 7 8 9

1  +   +   +   +   +   +  * * * * * * * * * * * *

2  +   +   +   +   +   +  * * * * * * * * * * * *

3  +   +   +   +   +   +  * * * * * * * * * * * *

60 – – –  +  – – –  +  – – – – – – – – – –

75  +  – – – –  +  – – – – – – – – – – –  + 

90 –  +  –  +   +  – – – – – – – – – –  +  – –

105  +  –  +   +  –  +   +  –  +   +   +   +  – – – – – –

120 –  +  –  +   +   +  – – – –  +   +  – – – – – –

135  +   +  – –  +  – – – –  +   +  – – – – – – –

150 –  +   +   +   +   +  – – –  +  – – – – –  +  – –

165 –  +  –  +  –  +  – – –  +  – – – – – – – –

180 –  +  – – – – – –  +  – – – – – – – –  + 

195  +   +  –  +   +   +  – – – – – – – – – – –  + 

210 – – – –  +   +  – – – – – – – – – – –  + 

225  +   +  – –  +   +  – – – – – – – – – – –  + 

240  +  –  +   +   +   +  – – – – – – – – – – –  + 

255 – – –  +  – – – – – – – – – – – – –  + 

Positive rate (%) 42.86 57.14 21.43 64.29 57.14 64.29 7.14 7.14 14.29 28.57 21.43 14.29 0 0 0 14.29 0 50
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Antibody response
Among the 112 serum samples, only sheep no. 7 and 9 
tested positive for MAP-specific antibodies: sheep no. 7 
tested positive twice (at 90 and 150 days post-exposure) 
and sheep no. 9 tested positive seven times (75, 180, 195, 
210, 225, 240, and 255 days post-exposure) (Table 1).

IFN‑γ and IL‑10 response
Among the 112 serum samples, group A exhibited 
extremely low cytokine concentrations, with no sig-
nificant differences in IFN-γ or IL-10 levels. Conversely, 
groups B and C showed a significantly higher IFN-γ 
response than group A from 60 days post-exposure, 
peaking at 105–135 days, followed by a gradual decline 
from 150 days and stabilization at a relatively high level 
between 180 and 255 days, remaining higher than group 
A. The IL-10 response in groups B and C began increas-
ing compared with that of group A from 120 days post-
exposure and showed a continuous upward trend. The 

IL-10 response of sheep no. 5 was lower than that of the 
other sheep in groups B and C starting from 150 days 
post-exposure but was still higher than that of group A 
(Fig. 2). There were no significant differences in cytokine 
responses between groups B and C.

Pathological changes
Gross pathology
Group A exhibited no obvious gross lesions. In groups 
B and C, sheep exhibited pale visible mucosa, light and 
sparse blood, small amounts of edematous fluid in the 
chest and abdominal cavities, muscle thinning, and adi-
pose tissue atrophy with a pale yellow, jelly-like appear-
ance. Additionally, sheep nos. 5 and 7 showed significant 
edema in the lower jaw. Prominent gross lesions were 
observed in the intestine and mesenteric lymph nodes.

Lesions in the small intestine, primarily affecting 
the jejunum and ileum, were characterized by marked 
intestinal contraction, thickened intestinal walls, and 

Fig. 1  MAP cultivation and identification (The left panel shows smooth growth of papillary MAP colonies on the surface of culture medium, 
and the right panel shows Ziehl–Neelsen acid-fast staining of a bacterial smear showing short, rod-shaped acid-fast bacilli (AFB) with uniform 
morphology and size)

Fig. 2  IFN-γ and IL-10 response (The left and right panels show IFN-γ and IL-10 responses, respectively, in sheep serum)
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diffuse mucosal folds, giving the intestine a “gyrus-like” 
appearance. Large intestinal lesions, mainly observed in 
the cecum and proximal colon, were relatively mild and 
resembled those in the small intestine. Mild mesenteric 
lymph node enlargement was noted, with uneven, moist 
cross-sections that appeared pale or grayish-yellow. 
Additionally, some mesenteric lymph nodes contained 
gray–white calcifications of varying sizes on the cut sur-
face (Fig. 3).

Histopathology
Group A sheep exhibited no significant histopathologi-
cal changes, whereas sheep in groups B and C showed 
similar lesions, which were mainly concentrated in the 
intestinal and mesenteric lymph nodes. In the duode-
num, cecum, and colon, scattered individual cells or 
clusters of lymphocytes, macrophages, epithelioid mac-
rophages, and plasma cells were present in the lamina 
propria, with a few epithelioid macrophages contain-
ing sparse AFB in their cytoplasm (Fig.  4). The jejunal 
villi were blunt and fused, with extensive infiltration of 
lymphocytes and epithelioid macrophages in the lamina 
propria, along with the presence of focal granulomas. 
Most epithelioid macrophages contained a large abun-
dant AFB (Fig. 5). Multifocal granulomatous lesions were 
visible in the jejunal lamina propria of sheep no. 5. The 

ileum exhibited intestinal villi atrophy and fusion, with 
multifocal or diffuse granulomatous lesions surrounded 
by a large number of lymphocytes in the lamina propria 
(Fig. 6a). Multinucleated giant cells were observed within 
the granulomas (Fig. 6b), and a large number of epithe-
lioid macrophages contained a significant amount of AFB 
(Fig. 6c). In addition, focal fibrotic granulomatous lesions 
were present in the ileal submucosal layer of sheep no. 
5 (Fig.  6d). In the mesenteric lymph nodes, connective 
tissue hyperplasia was observed in the capsule (Fig. 7a), 
along with multifocal granulomatous lesions (Fig.  7b) 
containing numerous macrophages, epithelioid mac-
rophages, and multinucleated giant cells in the corti-
cal region (Fig. 7c). Clusters of AFB were also observed 
in the cytoplasm of macrophages and epithelioid mac-
rophages in the medulla (Fig.  7d). Liver cell granular 
degeneration and necrosis were observed in sheep nos. 
8 and 9, whereas focal granulomas were observed in the 
liver parenchyma of sheep nos. 5, 8, and 9 (Fig. 8). Addi-
tionally, AFB were present in the macrophages of the ret-
ropharyngeal and superficial cervical lymph nodes.

Ultrastructural pathology
Numerous macrophages were observed in the intes-
tinal and mesenteric lymph nodes, with an increased 
number of phagolysosomes within the cytoplasm. 

Fig. 3  Gross pathology (The left panel shows ileal mucosa exhibiting diffuse folds resembling a gyrus, and the right panel shows mesenteric lymph 
nodes with an uneven sectional appearance and gray–white calcifications of varying sizes)

Fig. 4  Histopathology of the duodenum (Left: Hematoxylin–eosin [HE] staining of the duodenal lamina propria showing infiltration 
of lymphocytes, macrophages, epithelioid macrophages, and plasma cells; Right: Ziehl–Neelsen acid-fast staining of the duodenal lamina propria 
showing epithelioid macrophages with sparse intracellular acid-fast bacilli [AFB] (red arrow))
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Mitochondrial swelling and rough endoplasmic reticu-
lum expansion into vesicles were noted. Additionally, 
both intact and partially degraded MAP were observed 
in the cytoplasm of macrophages (Fig. 9).

BOB
Significant differences in BOB levels were observed 
between the liver and spleen (p = 0.0149) and between 
the liver and kidneys (p = 0.0481), whereas no signifi-
cant difference in BOB levels was observed between 
the spleen and kidneys (p = 0.8208). The tonsils exhib-
ited a significantly higher BOB levels than the adrenal 
glands (p = 0.0047) and porta hepatis lymph nodes (p = 
0.0059). The mesenteric lymph nodes had a significantly 
higher BOB than the adrenal glands (p = 0.0003) and 
porta hepatis lymph nodes (p = 0.0004). There were no 
significant differences in BOB levels between the tonsils 
and mesenteric lymph nodes (p = 0.6470) or between 
the adrenal glands and hepatic hilum lymph nodes (p = 
0.9996).

In the intestinal tissues from the duodenum to the 
rectum, the jejunum, ileum, and cecum exhibited 
higher BOB levels, with the ileum having the highest 
BOB (significantly higher than that of the duodenum, 
cecum, colon, and rectum [p < 0.0001]; significantly 
higher than that of the jejunum [p = 0.0019]), while the 
BOB of the rectum was the lowest (significantly lower 
than that of the jejunum [p = 0.0002]). Furthermore, 
the jejunum had a significantly higher BOB than the 
colon (p = 0.0019). Significant differences in BOB levels 
were also observed between the duodenum and jeju-
num (p = 0.0318) and between the cecum and rectum 
(p = 0.0105), whereas no significant differences were 
observed among the remaining intestinal tissues. All 
four stomach compartments tested positive for MAP; 
however, BOB levels were very low, with no significant 
differences among the compartments.

Discussion
The World Organization for Animal Health has recog-
nized PTB as a major global animal health concern [80] 
and classified it as a “neglected disease” [81]. No coun-
try has been declared free of MAP [82]. However, under-
reporting and underestimation of prevalence remain 
widespread, and many countries lack formal control 
plans [4]. Effective PTB control requires critical pro-
gress in diagnosis and vaccine development and a deeper 
understanding of host–pathogen interactions [83]. PTB 
experimental infection models are crucial for studying 
epidemiology, economic impact, infection dynamics, and 
control strategies [3]. In Chinese terminology, the rela-
tionship between the pathogen and animal model can 
be likened to the spear and shield, allowing exploration 
of both pathogen virulence (spear sharpness) and host 
resistance (shield strength). Small ruminants are natu-
ral hosts for MAP, with sheep serving as an ideal animal 
model for PTB, which has several advantages, including 
genetic consistency, low cost, and ease of experimental 
operation [84]. Historically, sheep has been a convenient 
ruminant model in MAP infection research [3]. In this 
study, the combination of MAP colonization, intestinal 
and mesenteric lymph node granuloma, multibacillary 
lesions, and fecal shedding satisfied the criteria for devel-
oping a successful sheep infection MAP model [3].

Clinical signs
In the present study, MAP-infected sheep exhibited 
clinical changes, including malnutrition, indicating that 
MAP negatively affects sheep health. However, only 
sheep nos. 5 and 7 showed intermittent fecal softening, 
without the typical symptoms of PTB-associated diar-
rhea [3]. In small ruminants, the symptoms of PTB are 
subtler, with a long incubation period in sheep. Clinical 
symptoms typically appear between 2 and 4 years of age 
and are primarily manifesting as progressive emaciation 
[85]. The post-exposure results indicate different stages 

Fig. 5  Histopathology of the jejunum (Left: HE staining of the jejunal submucosa showing infiltration of numerous lymphocytes and epithelioid 
macrophages; Middle: HE staining of the jejunal lamina propria of sheep no. 5 showing granuloma formation with fibrosis; Right: Ziehl–Neelsen 
acid-fast staining of the jejunal lamina propria showing epithelioid macrophages containing abundant intracellular acid-fast bacilli [AFB] (red 
arrow))
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Fig. 6  Histopathology of the ileum (a: HE staining of the ileal lamina 
propria showing multifocal granulomatous lesions with visible 
submucosal layers; b: HE staining of the ileal lamina propria showing 
diffuse granulomatous lesions with lymphocytes, epithelioid 
macrophages, and multinucleated giant cells (red arrow); c: Ziehl–
Neelsen acid-fast staining of the ileal lamina propria showing 
numerous epithelioid macrophages with abundant intracellular AFB; 
d: HE staining of the ileal submucosa of sheep no. 5 showing focal 
fibrotic granulomatous lesions)

Fig. 7  Histopathology of mesenteric lymph nodes (a: HE staining 
of mesenteric lymph nodes showing infiltration of lymphocytes, 
macrophages, and epithelioid macrophages in the subcapsular 
sinus and paracortex; b: HE staining of the mesenteric lymph node 
cortex showing multifocal granulomatous lesions; c: HE staining 
of mesenteric lymph nodes showing granulomas primarily composed 
of epithelioid macrophages and multinucleated giant cells; d: 
Ziehl–Neelsen acid-fast staining of mesenteric lymph nodes showing 
AFB (red arrow) within the cytoplasm of medullary and epithelioid 
macrophages)
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of MAP infection, including latent infection, active infec-
tion, and clinical affection [3]. Based on the results of 
various tests conducted on sheep after the MAP chal-
lenge at 255 days in this study, the infection was classi-
fied as active. Although the affected sheep did not exhibit 
classic PTB symptoms, significant pathological damage 
was observed in some individuals, indicating potential 
progression toward clinical disease and implications for 
infection dynamics. Additionally, PTB outcomes follow-
ing exposure are influenced by host-related factors (age at 
exposure and breed) and pathogen-related factors (MAP 
dose, strain type, and inoculum used in experimental 
infections) [3, 86].

Fecal shedding
In this study, fecal tests conducted 1–3 days after expo-
sure detected MAP, indicating pass-through rather than 

active shedding. From 60 days post-exposure, intermit-
tent MAP-positive fecal samples indicated active shed-
ding and true infection. These findings align with those 
of previous studies in that pass-through occurs within 10 
days of oral MAP ingestion [87], and 14 days post-inoc-
ulation fecal shedding indicates the proliferation of host 
MAPs [88]. Histopathological examination of the ileum 
revealed multibacillary lesions despite the absence of per-
sistent fecal shedding. Consistent with previous reports, 
transient shedding began 2  months after inoculation 
[89]. A long-term study (3–4.5 years) documented inter-
mittent shedding in 10 sheep during the first year [90]. 
Additionally, in a previous study, fecal samples collected 
42 days after exposure in a caprine model were positive 
for MAP [68]. However, as the earliest sampling in this 
study occurred at 60 days post-exposure, determining the 
earliest fecal shedding time was not possible. Fecal shed-
ding indicates that infected animals act as risk factors, 
repeatedly exposing susceptible animals to MAP, thereby 
influencing infection dynamics. The progression of this 
infection may lead to continuous daily shedding, thereby 
becoming a significant risk factor in infection dynamics. 
Alternatively, shedding may cease permanently within 16 
months post-exposure [3]. Because the present study had 
a 255-day challenge period, it was difficult to predict the 
possibility of permanent shedding and its cessation.

Although MAP culture identification is considered the 
“gold standard” for PTB diagnosis [91], PCR detection 
in this study demonstrated higher sensitivity than MAP 
culture results. Previous studies have also reported tran-
sient MAP shedding in the feces of most sheep within the 
first few months post-inoculation [92], and quantitative 
PCR—a more sensitive method—can effectively distin-
guish between low and high shedders [90]. The low sen-
sitivity of fecal culture may be attributed to intermittent 
shedding in the early stages of infection, wherein MAP 
levels decrease beyond the detection limit. Additionally, 
antibiotic treatment of fecal samples before culture can 
inhibit MAP growth [93]. Tissue PCR is more sensitive 
than tissue culture, particularly for latent infection [94, 
95].

MAP detection in whole blood
In this study, intermittent or short-term sustained MAP 
positivity in blood was observed via PCR in sheep no. 
5 (60 days post-exposure), sheep no. 4 (105 days post-
exposure), sheep no. 6 (105 and 180 days post-exposure), 
sheep no. 9 (105 and 120 days post-exposure), sheep no. 
8 (105, 120, and 135 days post-exposure), and sheep no. 
7 (105, 135, 150, and 165 days post-exposure), primar-
ily during the early post-exposure stages. MAP has been 
detected in the blood of infected cattle and sheep via 
PCR and in the blood of patients with Crohn’s disease via 

Fig. 8  HE staining of liver parenchyma showing focal granulomas 
(arrow) composed of lymphocytes, macrophages, and epithelioid 
macrophages

Fig. 9  Transmission electron micrograph. Mesenteric lymph 
node. Mesenteric lymph node. Engulfed bacteria (black 
arrow) and damaged or degraded bacteria (black arrowhead) 
in multinucleated giant cell



Page 10 of 15Li et al. BMC Veterinary Research          (2025) 21:298 

culture and PCR [88]. Additionally, bacteremia has been 
reported in goats, deer, and other species [88]. Findings 
from this study, combined with histopathological lesions 
in the intestine and liver, indicate that orally ingested 
MAP may enter the intestine, travel through the portal 
vein to the liver, and subsequently enter the bloodstream 
via the posterior vena cava, leading to low-level transient 
bacteremia.

Antibody response
In this study, only sheep no. 7 (90 and 150 days post-expo-
sure) and sheep no. 9 (75, 180, 195, 210, 225, 240, and 255 
days post-exposure) exhibited intermittent or transiently 
continuous positive antibody responses. Compared with 
MAP culture, ELISA is a cost-effective alternative for 
PTB detection [96], with a specificity of 48%–92% and a 
sensitivity of 50%–70% for PTB detection [97]. Previous 
studies have also reported significant variability in anti-
body responses. For instance, one study found that over 
one-third of sheep tested positive after 8  weeks post-
inoculation, with 41%–55% positivity during the study 
period [60]. The first pure-culture MAP sheep infection 
model detected no antibody response after 4  months 
post-exposure, and only 10% of sheep tested positive by 
8 months post-exposure [40]. Variability in ELISA results 
for anti-MAP antibody detection can be attributed to the 
delayed interval between the humoral immune response 
in infected sheep, differences in antigen composition 
across commercial ELISA kits used in different countries, 
and cross reactivity with other mycobacteria, which may 
compromise the specificity of serological testing [60].

IFN‑γ and IL‑10 response
A longitudinal analysis of immune responses through-
out PTB progression is crucial for understanding dis-
ease pathogenesis, diagnostic potential, and biomarker 
identification [45]. In this study, the exposure groups 
had higher IFN-γ levels than the control group from 60 
days post-exposure, which peaked between 105 and 135 
days post-exposure, began to decline at 150 days, and 
remained relatively stable from 180 to 255 days post-
exposure. At 120 days post-exposure, the IL-10 response 
was higher than that in the control group and showed 
a continuous upward trend. This finding is consistent 
with that of de Silva et al. [98], who reported that IL-10 
levels increased at 4  months post-inoculation in sheep. 
Coussens et al. [99] reported elevated IL-10 gene expres-
sion in peripheral blood mononuclear cells from sub-
clinical-stage cows stimulated with MAP in  vitro. IL-10 
expression significantly differs between sheep with pauci-
bacillary and those with multibacillary disease [100]. The 
switching between Th1 and Th2 responses is a complex 
process that may be triggered by MAP exposure dose, 

macrophage bursting size, T-cell exhaustion, and other 
host-level metabolic triggers [3]. Additionally, infection 
with type C MAP strains has been reported to elicit a 
stronger IFN-γ response [3].

Pathological changes
In this study, gross lesions included intestinal mucosa 
thickening, mesenteric lymph node enlargement, and 
lymphangiectasia, consistent with the findings reported 
by Verin et  al. [101]. These lesions hinder the intestinal 
absorption of water and nutrients, thereby leading to 
diarrhea, emaciation, and cachexia in affected animals 
[102]. This study concluded 255 days post-exposure, and 
the sheep did not exhibit diarrhea and cachexia; however, 
histopathological and ultrastructural lesions reflected 
severe damage to tissue function.

The primary focus in the PTB examination was granu-
lomatous inflammation and AFB presence. In this study, 
sheep in groups B and C exhibited similar lesions, with 
ileal lesions being the most severe. Multifocal granu-
lomatous lesions and multinucleated giant cells were 
observed, and most epithelioid macrophages contained 
a large amount of AFB. Based on the earliest PTB histo-
pathological classification system [103] and the granu-
lomatous inflammation grading system for ileal and 
mesenteric lymph node lesions [104], lesion severity is 
categorized as follows: grade 1, few or clustered epithe-
lioid macrophages and rare AFB; grade 2, focal granu-
loma with only a few macrophages containing small 
amounts of AFB; grade 3, multifocal granulomatous 
inflammation, wherein most macrophages contain abun-
dant AFB; and grade 4; diffuse granulomatous inflam-
mation, wherein most macrophages are expanded due 
to AFB accumulation. According to the aforementioned 
lesion grading criteria, it was classified as grade 3. A 
previous study showed that an MAP challenge dose of 
103–106 CFU induces focal lesions, whereas a higher dose 
of 108–109  CFU results in extensive and severe lesions 
[3]. In this study, the inoculation dose corresponded with 
the severity of observed lesions. Sheep typically develop 
lesions within 6–12 months after positive culture detec-
tion [104]. In this study, MAP culture yielded positive 
results at 75 days post-exposure, which was in agreement 
with the lesions observed at the 255-day post-exposure 
necropsy. Additionally, the presence of intestinal histo-
pathological lesions appears to be a strong indicator of 
MAP shedding and vice versa [3].

The results of this study demonstrated that the ileal 
BOB was the highest, and acid-fast staining revealed 
that the ileal lesions were multibacillary lesions. Previous 
studies have reported that MAP infection initially estab-
lishes in the lymphoid tissue of the small intestine, which 
may cause segmental lesions at multiple locations and 



Page 11 of 15Li et al. BMC Veterinary Research          (2025) 21:298 	

spread to the lamina propria and local lymph nodes [73]. 
The ileum may be the first site of MAP invasion and colo-
nization [20]. MAP antigen exposure triggers an inflam-
matory response in the intestinal and mesenteric lymph 
nodes, resulting in granuloma formation. Granulomatous 
inflammation with MAP-containing macrophage infil-
tration occurs in the ileum [105]. In naturally infected 
sheep, lesions are primarily found in the jejunum, ileum, 
and mesenteric lymph nodes [94, 104]. Consistent with 
the findings of this study, a previous study reported that 
MAP is more abundant in the intestinal mucosa than 
in the mesenteric lymph nodes [104]. Therefore, active 
infection, particularly in the early stages, can be deter-
mined by histopathological examination of the ileum or 
jejunum rather than mesenteric lymph nodes. Moreo-
ver, previous studies have clearly stated that histological 
lesions and their grading are good indicators of active 
infection and affection [3].

In this study, multinucleated giant cells were observed 
in the ileal and mesenteric lymph nodes of sheep chal-
lenged with type II MAP. The presence of Langhans-type 
giant cells is reported to be a typical feature of C strain–
induced lymph node granuloma [17]. Multinucleated 
giant cells are mainly observed in severe cases, and the 
more numerous they are, the higher is their effect on 
inflammation [106]. These cells can clear cellular debris 
and free MAP antigens at the site of lesions [107]. Addi-
tionally, sheep no. 5 exhibited focal fibrotic granuloma-
tous lesions in the ileal submucosal layer, indicative of 
a “regressive”-type granuloma change. This indicates a 
potential shift toward lesion regression, disease recovery, 
and MAP clearance [3].

Notably, the tonsils exhibited a higher BOB than the 
adrenal glands and porta hepatis lymph nodes. In addi-
tion to the small intestine, the tonsils are reported to be 
a common site of MAP invasion [23]. Moreover, in the 
present study, liver focal granulomas and intestinal and 
mesenteric lymph node–associated tissues had a certain 
degree of BOB, and posterior pharyngeal and superfi-
cial cervical lymph nodes had AFB. These findings are 
consistent with those of a previous study reporting per-
sistence of MAP in extraintestinal tissues, as observed 
in goats 12 months post-inoculation [69]. The outcomes 
of MAP challenge depend on various biological factors, 
including the MAP strain, inoculation dose, route of 
exposure, sheep breed, age at infection, culture condi-
tions (subcultured organisms vs. tissue homogenates), 
and host susceptibility. In conclusion, early diagnosis of 
PTB should be based on actual scenarios by combining 
multiple sample types and testing methods.
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