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Abstract 

Background  Antimicrobial resistance (AMR) is a major global challenge that disproportionately affects low- and mid-
dle-income countries (LMICs). Environmental contamination by resistant bacteria from animal production facilities 
is a major driver of the spread of AMR through the food chain, requiring a robust one-health control approach. 
Traditional culture-based AMR surveillance is time-consuming and less sensitive, and fails to fully capture the spec-
trum of AMR, evolutionary trends, and epidemiological patterns of AMR spread. Whole-genome sequencing (WGS) 
has revolutionized AMR surveillance capabilities. Rapid WGS captures the full AMR spectrum with minimum samples, 
aids source attribution, and provides insights into trends in AMR spread. The portable Oxford Nanopore® Technology 
(ONT) platform, coupled with open-source software such as Galaxy and Konstanz Information Miner (KNIME), enables 
the establishment of a potentially portable, transferable workflow for low-resource settings. This study aimed to assess 
the AMR burden on four dairy farms in Kandy, Sri Lanka, via a resource-limited LMIC using a low-cost high-throughput 
screening assay and rapid WGS via ONT with Galaxy and KNIME processing to obtain full antibiotic resistomes.

Results  The four isolates exhibiting the highest minimum inhibitory concentrations for amoxicillin were identified 
as Enterobacter cloacae and E. hormaechei by WGS. Chromosomes (4.8 to 4.9 Mb) carry the strain-specific resistance 
genes blaCMH-1, blaACT-25, fosA_7, and ramA, which are associated with diverse antibiotic classes. Plasmids, includ-
ing IncFIB (pECLA), IncFII (pECLA), and IncX3, carry multiple resistance genes, including AAC(3)-IIe, AAC(6’)-Ib-cr, 
APH(3″)-Ib, APH(6)-Id, blaCTX-M-15, blaNDM, blaOXA-1, blaTEM-1, dfrA14, QnrB17, catII, determinant-of-bleomycin-resist-
ance, and sul2. Novel arrangements of insertion sequences were observed in E. hormaechei plasmids. The phenotypic 
resistance of all the isolates matched the genotypic MDR profiles, including resistance to chloramphenicol, gen-
tamicin, tetracycline, and cotrimoxazole.

Conclusions  ONT WGS with Galaxy and KNIME processing may be a feasible option for AMR surveillance in resource-
limited LMICs. To the best of our knowledge, this is the first in-house whole-genome analysis workflow in the country 
tailored for AMR surveillance. The presence of potentially pathogenic high-MIC, MDR Enterobacter spp. with wide 
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resistomes, including the blaNDM gene, emphasizes the urgent need to address AMR in animal production facilities 
within a one-health framework.

Keywords  Enterobacter cloacae complex, Multidrug-resistant bacteria, Oxford Nanopore sequencing

Introduction
Antimicrobial resistance (AMR) is a major global 
health concern with a disproportionate burden on 
lower- and middle-income countries (LMICs). It is con-
sidered a silent pandemic and currently causes more 
than one million deaths annually [1]. The current death 
toll is predicted to rise to 10 million by 2050 if vigor-
ous actions are not taken to curb the emergence and 
transmission of AMR [2]. Nearly 70% of antimicrobial 
drugs sold globally are used on farm animals for thera-
peutic, prophylactic, and growth-promoting purposes 
[3, 4]. Consequently, farm effluents such as feces and 
wastewater are major sources of antimicrobial residues 
and potential elevators of antibiotic-resistant bacteria 
(ARB) and antibiotic resistance genes (ARGs) [5]. These 
effluents contaminate the farm environment as well as 
the surrounding agricultural lands and natural water-
ways. Additionally, the use of manure and farm waste 
as fertilizer, which is a common practice in LMICs, 
directly contributes to the further spread of ARB and 
ARG [6, 7]. Furthermore, certain ARBs may persist in 
agricultural soils for several years after the cessation of 
manure use and contaminate vegetables grown on these 
lands [8, 9]. Therefore, the emergence and transmission 
of AMR in animal production systems is a prime cause 
driving the global AMR burden.

Many countries, including Sri Lanka, have developed 
national action plans (NAPs) for AMR that include AMR 
surveillance programs [10, 11]. However, most surveil-
lance programs in NAPs focus on the detection of AMR 
in the human health sector, with concurrent lower finan-
cial inputs for surveys in the animal health sector. Even 
the few active surveillance programs for animals are 
conducted mainly for food safety purposes [11]. Active 
surveillance of AMR in animal production facilities is 
constrained by a lack of regulations and guidelines, har-
monized sampling protocols, and cost-effective and 
robust technologies. Most currently used analytical 
methods are focused on the detection of ARB/ARGs in 
selectively cultured bacteria, such as Escherichia coli [12, 
13]. Importantly, many microbial species, particularly 
those that naturally inhabit animal production facilities 
and environments that contribute to the spread of ARB, 
are nonculturable, difficult to grow, or difficult to identify 
via conventional biochemistry. Therefore, the true AMR 
burden in animal production facilities and the environ-
ment is often underestimated, particularly in LMICs.

Sri Lanka is a tropical South Asian LMIC. The dairy 
industry is the second largest animal production sec-
tor in the country, and consequently consumes a large 
quantity of antibiotics sold [14–18]. The Central Prov-
ince in the up-country agroclimatic zone has the high-
est cattle density in the country and produces ~ 30% of 
the total milk output [16, 19]. The current annual milk 
production of Sri Lanka is approximately 480 million 
liters, which meets only 40% of the domestic demand. 
Accordingly, the import of dairy products is a major 
burden on the Sri Lankan economy [15, 18]. In this con-
text, the government of Sri Lanka currently has a policy 
to achieve self-sufficiency in dairy products in the near 
future and has recently introduced many incentives to 
develop the dairy sector. Despite government support, 
AMR in the dairy sector is a major challenge that sig-
nificantly increases the cost of production in addition 
to the inherent environmental contamination and risk 
to human health [20].

Despite having an NAP on AMR, Sri Lanka lacks an 
active AMR surveillance program for the veterinary 
sector and, specifically, does not have specific regula-
tions/guidelines that mandate the surveillance of AMR 
in animal production facilities and the environment. 
Therefore, the limited information available on AMR 
in animal production facilities and the environment 
is from ad hoc surveys, which are generated by time-
consuming and relatively expensive culture-dependent 
methods.

The development of Oxford Nanopore Technol-
ogy (ONT) real-time long-read sequencing is bringing 
significant advantages to microbial genomics. Unlike 
short-read sequencing, ONT enables the identifica-
tion of complex genomic features like repeat elements, 
structural variants, and plasmids. These capabilities 
enhance the accurate bacterial species identification 
and their corresponding AMR determinants [21, 22]. 
Furthermore, ONT’s portability, speed, and scalability 
make it an attractive tool in both field and clinical set-
tings for pathogen surveillance, outbreak response, and 
AMR monitoring [23, 24]. As recent studies mentioned, 
Thorpe et  al. (2024) showed a surveillance study, how 
multidrug-resistant tuberculosis was readily tracked 
using ONT’s genome and plasmid assembling capa-
bilities compared to Illumina sequencing [25]. Schmidt 
et  al. (2016) utilized ONT metagenomics to detect 
bacterial pathogens and resistance genes in clinical 
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samples [26]. Consequently, ONT sequencing is a suc-
cessful method for the detection of bacterial species 
and AMR surveillance.

Therefore, the objective of the present study was to 
evaluate a rapid, low-cost, high-throughput screening 
system based on next-generation sequencing coupled 
with open-source Galaxy software and the Konstanze 
Information Miner (KNIME) platform as a pilot study to 
screen ARBs in dairy farms in the Central Province of Sri 
Lanka.

Results
Sample collection
A schematic overview of the overall protocol is pro-
vided to illustrate the sequence of methodologies 
employed (Fig. 1). A total of 15 samples were collected 
from all veterinary ranges across three farms in each 
area, out of which four single isolates were selected for 
downstream genomic analysis. The geographical loca-
tions of the sampling sites are shown in Fig. 2.

Fig. 1  The workflow for systematic analysis and visualization of multidrug-resistant (MDR) bacterial isolates. This workflow provides a systematic 
approach to characterize MDR bacterial isolates, incorporating rapid library preparation with transposase-based barcoding and adapter ligation 
via MinION sequencing. This approach facilitated the inclusion of circular genomic DNA for sequencing. Multiple rounds of assembly polishing 
were performed via Racon and Medaka to increase genome accuracy and minimize pseudogene artifacts. The workflow enabled a thorough 
characterization of genomic features, including antimicrobial resistance genes, virulence factors, and other relevant elements, providing insights 
into the genetic architecture of MDR bacteria. Individual bioinformatic software at each step is shown in the boxes with their main function
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Screening for antibiotic resistance
In the initial 96-well plate screening assay, all 15 cow 
dung samples tested showed an increase in turbidity in 
the wells with amoxicillin, indicating the presence of cul-
turable, aerobic bacteria with the ability to grow in the 
presence of amoxicillin at a 50  µg/mL concentration in 
the composite samples obtained from all farms.

Four samples grown with antibiotics, at least one per 
veterinary range, presented an optical density (OD) > 0.2. 
At least one sample grown with antibiotics from the 
Galaha, Teldeniya, and Kundasale ranges showed 
OD > 50% compared with the OD of the control, indicat-
ing the presence of many amoxicillin-resistant bacteria in 
the samples originating from these farms (Fig. 3).

Determination of minimum inhibitory concentrations 
(MICs)
Growth was observed (> 0.2 OD value in the initial 
96-well plate assay compared to the control) in all sam-
ples plated on single culture plates with amoxicil-
lin (50  μg/mL), confirming the presence of culturable, 

aerobic, amoxicillin-resistant bacteria on all farms. At 
least three isolates per farm were randomly selected for 
the MIC assays.

The observed MIC values for amoxicillin ranged from 
12.5  µg/mL to 3200  µg/mL. Four isolates presented 
MICs ≥ 100 µg/mL (Fig. 4). The additional data file shows 
the mean OD values for samples from each veterinary 
range and all the MIC values obtained for selected iso-
lates (see Additional file 1).

Based on the initial 96-well plate assay (OD > 0.2) 
and minimum inhibitory concentration threshold 
(MIC ≥ 100  µg/mL amoxicillin), four isolates were 
selected for this AMR study, which originated from four 
different farms. (Strain 01 from Gangawatakorale farm 
02, Strain 02 from Theldeniya farm 03, Strain 03 from 
Kundasale farm 02, Strain 04 from Galaha farm 03).

Identification of the isolates and determination of AMR 
profiles
All four isolates that presented the highest MIC for 
amoxicillin (≥ 100  µg/ml) were gram-negative motile 

Fig. 2  Geographical distribution of veterinary sampling sites in the Kandy district, Central Province, Sri Lanka. The black pins indicate the locations 
of the veterinary sampling sites (Gangawatakorale, Kundasale, Teldeniya, Gampola, and Galaha). The inset map highlights the location of the Central 
Province within Sri Lanka. The scale bar indicates a distance of 10 km for the spatial reference of the veterinary sampling sites in the Kandy district, 
and the arrows represent cardinal directions for orientation (north and south)
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bacilli. All were negative for indole, methyl red, and 
Voges–Proskauer tests and did not produce hydrogen 
sulfide. All the isolates were positive for citrate and ure-
ase and fermented lactose, sucrose, mannitol, and xylose, 
suggesting that the isolates may be identified as Entero-
bacter cloacae complex. In addition to amoxicillin resist-
ance, these four isolates were resistant to ciprofloxacin 
and chloramphenicol. Additionally, one isolate was resist-
ant to tetracycline. In contrast, the remaining 03 isolates 
were resistant to gentamycin and cotrimoxazole. Accord-
ingly, all the isolates were phenotypically categorized as 
MDR (Table 1).

DNA quality and integrity
The extracted DNA from the above four isolates was con-
firmed to be of high molecular weight with fragment sizes 
exceeding 10 kb by agarose gel electrophoresis (Supple-
mentary Figs. 1 & 2). Purity assessment via a Nanodrop 
spectrophotometer revealed OD 260  nm/280  nm ratios 
ranging from 1.86 to 1.94, indicating minimal protein 
contamination (Additional file 2).

Genome Assembly and Annotation
MinION DNA sequencing generated > Q7 525.2  Mb 
(107 ×) for Strain 01, 398.1  Mb (81 ×) for Strain 02, 
180.2  Mb (36 ×) for Strain 03, and 339.2  Mb (69 ×) for 
Strain 04. These coverage values mentioned raw read 

coverage, while assembly coverage generated by Flye is 
detailed in Table 2. Across the assembly tools, the chro-
mosome sequences commonly appeared as circularized 
4.8–4.9  Mb contigs, and plasmids ranged between 8 
and 171  kb except for Strain 01, which lacked plasmids 
(Table 2). Each of the four isolates had circular genome 
configurations. At least one mega-plasmid, defined as a 
plasmid > 170 kb, was detected in three isolates (Table 2), 
with the exception of Strain 01. These isolates com-
monly harbor the replicons IncFIB (pECLA) and IncFII 
(pECLA). The IncX3 replicon microplasmid (< 53.7  kb) 
and unnamed (without a replicon) microplasmid (> 9 kb) 
were present separately in Strains 02, 03, and 04. After 
sequence correction and assembly polishing, Strains 01, 
02, 03, and 04 presented average coverage values of 106x, 
75x, 35x, and 66x, respectively. A summary of assembly 
quality is provided (Additional file 3).

According to the annotation results (Table  3, Addi-
tional file  11), Strain 01 presented 5052 coding DNA 
sequences (CDS: including hypothetical proteins and 
putative genes) with a total of 5164 genes, alongside 25 
ribosomal RNAs (rRNAs), 86 transfer RNAs (tRNAs), 
and 1 transfer-messenger RNA (tmRNA). Strain 02 pre-
sented 5544 genes, along with 5433 CDSs, 25 rRNAs, 85 
tRNAs, and 1 tmRNA. Strain 03 included 6014 genes, 
with 5904 CDSs, 25 rRNAs, 84 tRNAs, and 1 tmRNA. 
Strain 04 included 5669 genes alongside 5558 CDSs, 25 

Fig. 3  Optical density (OD) of cow dung samples from fifteen farms in Kandy. OD of the broth in the 96-well plates containing cow dung samples 
from 15 selected farms in the Kandy district (3 separate farms from each zone) after incubation for 24 h in the presence of amoxicillin (50 μg/
mL) and without amoxicillin. The results are presented as the mean ± SEs (n = 4). A zero value was obtained for the OD in the negative control 
with only broth. Graphs were constructed via SigmaPlot V.11.0 [27]
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rRNAs, 85 tRNAs, and 1 tmRNA. These results, detailed 
in Supplementary file 11, highlight variations in gene 
content with an E value cutoff of 1e-06 among the iso-
lates while maintaining the consistent presence of riboso-
mal and transfer RNA elements across all isolates.

As virulence genes, ompA in the chromosomes of 
all studied isolates and csgG in Strain 01 and entB in 

Strains 02, 03, and 04 were identified with coverage 
values greater than 99% (Additional file 8). The Entero-
bacter isolates had low-confidence (evidence level 1) 
CRISPR arrays without associated Cas genes. All iso-
lates had one to three arrays, located on chromosomes 
and/or mega-plasmids, with variable repeat lengths 
(23–48  bp). The arrays had unique spacer sequences 

Fig. 4  Four bacterial isolates displayed amoxicillin resistance with MICs ≥ 100 µg/mL at an OD of 620 nm. The results are presented 
as the mean ± SEs (n = 4), and the MIC breakpoint for amoxicillin is 8 µg/mL according to EUCST 2022. Isolates IDs are Strain 01, Strain 02, Strain 03, 
and Strain 04. Graphs were constructed via SigmaPlot V.11.0 [27]

Table 1  Phenotypic antibiotic resistance of the studied isolates

R Resistance, S Susceptible
a Expected, intrinsic resistance

Isolate ID Ciprofloxacin 
(Quinolone)

Cefuroxime (β 
lactams)a

Cefotaxime (β 
lactams)a

Chloramphenicol 
(Phenicols)

Gentamicin 
(Aminoglycoside)

Tetracycline Cotrimoxazole 
(Sulfonamide)

Strain 01 R R R R S R S

Strain 02 R R R R R S R

Strain 03 R R R R R S R

Strain 04 R R R R R S R
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Table 2  Antibiotic resistance gene locations in chromosomes and plasmids identified via ABRicate v. 1.0.1

Isolate ID Contig Length (bp) Coverage Contig IDa Resistance genesb Antibiotic classes

Strain 01 1 4949914 57 C ramA carbapenem; cephalosporins; 
cephamycin; fluoroquinolone; 
glycylcycline; monobactam; 
penam; penem; phenicol; rifamy-
cin; tetracycline; triclosan

blaCMH-1c cephalosporins

fosA_7 Fosfomycin

Strain 02 3 4894288 37 C blaACT-25c carbapenem; cephalosporins; 
cephamycin; penam

2 172129 36 P: IncFIB(pECLA), IncFII(pECLA) AAC(3)-IIec aminoglycoside

AAC(6’)-Ib-crc aminoglycoside; fluoroquinolone

APH(3’’)-Ibc aminoglycoside

APH(6)-Idc aminoglycoside

blaCTX-M-15c cephalosporins

blaOXA-1c cephalosporins; penam

blaTEM-1c cephalosporins; monobactam; 
penam; penem

catII_from_Escherichia_coli_K-12c phenicol

dfrA14c diaminopyrimidine

QnrB17c fluoroquinolone

sul2c sulfonamide

1 53660 35 P: IncX3 blaNDM-4c carbapenem; cephalosporins; 
cephamycin; penam; penem

determinant_of_bleomycin_resist-
ance

glycopeptide

4 8417 417 P: Unnamed - -

Strain 03 1 4893849 17 C blaACT-25c carbapenem; cephalosporins; 
cephamycin; penam

2 172113 19 P: IncFIB(pECLA), IncFII(pECLA) AAC(3)-IIec aminoglycoside

AAC(6’)-Ib-crc aminoglycoside; fluoroquinolone

APH(3’’)-Ibc aminoglycoside

APH(6)-Idc aminoglycoside

blaCTX-M-15c cephalosporins

blaOXA-1c cephalosporins; penam

blaTEM-1c cephalosporins; monobactam; 
penam; penem

catII_from_Escherichia_coli_K-12c phenicol

dfrA14c diaminopyrimidine

QnrB17c fluoroquinolone

sul2c sulfonamide

3 53660 19 P: IncX3 blaNDM-4c carbapenem; cephalosporins; 
cephamycin; penam; penem

determinant_of_bleomycin_resist-
ance

glycopeptide

4 10885 84 P: Unnamed - -
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(Supplementary Figs.  8, 9, 10, & 11 and Additional 
file 9).

Analysis of insertion sequences (ISs) annotated by 
ISEScan and ISFinder in four isolates studied revealed 
the presence of 11 different IS families, including a 
novel IS (Table  4, Additional file  10). Each isolate’s 

chromosome exhibited 2 distinct IS families: IS4 and 
IS481 in Strain 01 and IS1 and IS3 in the other three 
isolates. Furthermore, the mega-plasmids of Strains 
02, 03, and 04 consistently contained seven IS families 
each, including the novel IS. Similarly, the microplas-
mids across these isolates consistently harbored four IS 

a Contig ID represents chromosome (C) or plasmid (P): replicon determined via staramr v.0.7.2
b Resistance genes identified via ABRicate v. 1.0.1 (≥ 96% identity and coverage) via the Comprehensive Antibiotic Resistance Database (CARD) and ResFinder 
databases displayed in alphabetical order. Coverage describes the number of corrected sequencing reads that are uniquely mapped to the target genome
c Resistance genes found from both databases (CARD and ResFinder)

Table 2  (continued)

Isolate ID Contig Length (bp) Coverage Contig IDa Resistance genesb Antibiotic classes

Strain 04 2 4894171 33 C blaACT-25c carbapenem; cephalosporins; 
cephamycin; penam

5 172118 34 P: IncFIB(pECLA), IncFII(pECLA) AAC(3)-IIec aminoglycoside

AAC(6’)-Ib-crc aminoglycoside; fluoroquinolone

APH(3’’)-Ibc aminoglycoside

APH(6)-Idc aminoglycoside

blaCTX-M-15c cephalosporins

blaOXA-1c cephalosporins; penam

blaTEM-1c cephalosporins; monobactam; 
penam; penem

catII_from_Escherichia_coli_K-12c phenicol

dfrA14c diaminopyrimidine

QnrB17c fluoroquinolone

sul2c sulfonamide

6 53614 15 P: IncX3 blaNDM-15c carbapenem; cephalosporins; 
cephamycin; penam

determinant_of_bleomycin_resist-
ance

glycopeptide

1 9508 8 P: Unnamed - -

Table 3  General features of the Enterobacter sp. genomes of the four isolates on the basis of Prokka genome summaries

Features Enterobacter cloacae 
(Strain 01)

Enterobacter hormaechei 
(Strain 02)

Enterobacter hormaechei 
(Strain 03)

Enterobacter 
hormaechei 
(Strain 04)

Contigs 1 4 4 4

Bases 4949914 5128494 5130507 5139222

CDS 5052 5433 5904 5558

rRNA 25 25 25 25

tRNA 86 85 84 85

tmRNA 1 1 1 1

Hypothetical protein (H) 1264 1647 1857 1688

Putative genes (P) 358 339 361 360

CDS without H & P 3430 3447 3904 3510

Total genes 5164 5544 6014 5669
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families, which also included the novel IS. All identi-
fied IS clusters and related details, including terminal 
inverted repeats, are provided in additional file 10, and 
locations are clearly shown in Supplementary Figs.  8, 
9, 10, & 11. This comprehensive analysis highlights the 
presence and distribution of IS elements, emphasizing 
both consistency and variability across different genetic 
elements in the studied isolates. Furthermore, two 
transposon (Tn) elements with more than 90% query 
coverage were found in Strains 02, 03, and 04 according 
to the ISFinder BLAST results.

Taxonomic assignments
Taxonomic assignment via the WIMP (What’s In 
My Pot) feature of the EPI2ME identified the follow-
ing taxa: 100% Enterobacteriaceae, which represents 
100% E. cloacae for Strain 01; and Enterobacter hor-
maechei, which represents Strains 02 (92%), 3 (77%) 
and 4 (72%) with threshold value ≥ 750000 (Additional 
file 4, Supplementary Fig. 3). In a subsequent test from 
Kraken2, classification results were obtained for Strain 
01, namely, Enterobacter cloacae subsp. cloacae ATCC 
13047 (taxid 716541), and for the other three isolates, 
namely, Enterobacter hormaechei subsp. xiangfangen-
sis (taxid 1296536) (Additional file 5), from their chro-
mosomes. Additionally, NCBI BLAST searches of the 
complete sequences of the mega-plasmids in Strains 02, 
03, and 04 revealed that E. hormaechei presented > 99% 
identity (Additional file 6). To visualize these findings, 
a 16S rRNA-based phylogenetic tree was constructed 
(Fig.  5). Additional data files show the taxonomic 
assignment and genome maps (see Additional files 
4, 5, & 6). The GTDB-Tk results provided improved 
taxonomic resolution and confirmed the species-level 
assignments of our isolates. Detailed summary of the 

classification output has included in the Additional 
file 5.

Antibiotic resistance and the location of acquired 
resistance in the genome
The chromosome sizes ranged from 4.8–4.9  Mb. Nota-
bly, the resistance genes ramA, blaCMH-1, and fosA_7 
were present in Strain 01 (Fig.  6), conferring resistance 
to β-lactams, fluoroquinolones, phenicols, rifamycins, 
tetracyclines, triclosan, and fosfomycin antibiotic classes. 
In Strains 02, 03, and 04, the β-lactam resistance gene 
(blaACT​) was present in the chromosome. Notably, all 
the other resistance genes (≥ 92%) were present on plas-
mids within these three isolates (Figs. 6 & 7 and Supple-
mentary Figs. 4, 5, 6, & 7). Further details of the identified 
resistance genes from ABRicate are shown in Additional 
file 7.

The IncX3 replicon microplasmid contained resist-
ance genes of blaNDM-4 and determinant_of_bleomy-
cin_resistance, which confer resistance toward β-lactams 
and glycopeptides, respectively. A double-replicon-iden-
tified mega-plasmid contained aminoglycoside, β-lactam, 
diaminopyrimidine, fluoroquinolone, phenicol and sul-
fonamide resistance (AAC(3)-IIe, AAC(6’)-Ib-cr, APH(3’’)-
Ib, APH(6)-Id, blaCTX-M-15, blaOXA-1, blaTEM-1, 
dfrA14, QnrB17, catII & sul2) (Table 2, Additional file 7). 
The extended-spectrum β-lactamases BlaTEM and 
blaCTX-M have been detected in Strains 02, 03, and 04 
as intrinsic resistance genes. Additionally, the blaACT​, 
blaNDM, blaOXA (Strains 02, 03, and 04), and blaCMH 
(Strain 01) genes have also been identified as intrinsic 
beta-lactam resistance genes.

In the comparative analysis of AMR gene predictions 
from the Comprehensive Antibiotic Resistance Database 
(CARD) and ResFinder databases from ABRicate across 
studied isolates (Additional file 7), all genes except one in 

Table 4  Summary of mobile genetic elements (MGEs) in four isolates identified via ISEScan and ISFinder

a Contig ID represents chromosome (C) or plasmid (P), and n denotes the number of sequences within each mobile genetic element (MGE) family that produced 
significant alignments

Isolate ID Contig IDa Families of mobile genetic elements (E. value: < 1)

Strain 01 Contig 01_C IS4 (n = 1), IS481 (n = 1)

Strain 02 Contig 01_P IS5 (n = 1), IS6 (n = 1), ISL3 (n = 1), new (n = 1), Tn3 (n = 1)

Contig 02_P IS110 (n = 1), IS1380 (n = 1), IS3 (n = 4), IS5 (n = 1), IS6 (n = 4), ISNCY (n = 1), new (n = 1), Tn3 (n = 1)

Contig 03_C IS1 (n = 1), IS3 (n = 4)

Strain 03 Contig 01_C IS1 (n = 1), IS3 (n = 3)

Contig 02_P IS110 (n = 1), IS1380 (n = 1), IS3 (n = 4), IS5 (n = 1), IS6 (n = 2), ISNCY (n = 1), new (n = 1), Tn3 (n = 1)

Contig 03_P IS5 (n = 1), IS6 (n = 1), ISL3 (n = 1), new (n = 1), IS30 (n = 1), Tn3 (n = 1)

Strain 04 Contig 02_C IS1 (n = 1), IS3 (n = 4)

Contig 05_P IS110 (n = 1), IS1380 (n = 1), IS3 (n = 3), IS5 (n = 1), IS6 (n = 4), ISNCY (n = 1), new (n = 1), Tn3 (n = 1)

Contig 06_P IS5 (n = 1), IS6 (n = 1), ISL3 (n = 1), new (n = 1), Tn3 (n = 1)
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each isolate were predicted, as marked (c) in Table 2. Spe-
cifically, the ramA gene was not detected in Strain 01 via 
ResFinder, whereas it was predicted via the CARD data-
base. Additionally, the fosA gene was identified in Strain 

01 via ResFinder with > 96% identity. Furthermore, the 
novel determinant_for_bleomycin_resistance gene was 
predicted in Strains 02, 03, and 04 via the CARD data-
base but was not identified via ResFinder.

Fig. 5  Phylogenetic tree based on 16S rRNA sequences of four sequenced Enterobacter isolates. The phylogenetic tree was inferred 
via the neighbor‒joining method [28], and the optimal tree is shown. The percentage of replicate trees in which the associated taxa clustered 
together in the bootstrap test (1000 replicates) is shown next to the branches [29]. The tree is drawn to scale, with branch lengths in the same units 
as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances (number of nucleotide substitutions per site) 
were computed via the Kimura-2-parameter method [30]. All ambiguous positions were removed for each sequence pair. There was a total of 1519 
positions in the final dataset. Evolutionary analyses were conducted in MEGA11 [31]

Fig. 6  Genome map of Strain 01. The bacterial chromosome is 4.9 Mb in size. Antibiotic resistance genes are highlighted in red. The circular map 
was constructed by uploading the Galaxy annotated GenBank file into the CGView/Proksee genome visualization tool
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Discussion
The multidrug-resistant Enterobacter cloacae complex 
(ECC), which represents ESKAPE pathogens (Enterococ-
cus faecium,  Staphylococcus aureus,  Klebsiella pneumo-
niae, Acinetobacter baumannii, Pseudomonas aeruginosa, 
and Enterobacter spp.), which shows increased resistance 
to commonly used antibiotics, is emerging as a global 
threat [32]. In addition to intrinsic β-lactam resistance 
genes, members of the ECC family acquire multiple 
classes of antibiotic resistance genes. The misuse and 
overuse of antibiotics in livestock farms is one of the 
major contributors to the development of AMR, includ-
ing multidrug-resistant ECC. The significance of ani-
mal farming in regions with limited resources cannot 
be underestimated, particularly as many countries shift 
toward more intensive animal husbandry practices. This 
shift, unless coupled with good husbandry practices and 
increased hygiene, results in increased usage of antimi-
crobial agents, consequently increasing the potential 
for increased exposure to AMR for both animals and 
humans on a global scale [33].

Compared with traditional agar plate-based screen-
ing, the 96-well plate screening method developed in 
this study can be easily used to screen multiple samples 
at once. Furthermore, the identification of specific resist-
ant bacteria or groups of bacteria via the use of different 

antibiotics for selection can potentially be adaptable [34]. 
The ONT MinION portable sequencing platform cou-
pled with an open-source workflow provides a feasible 
solution for genomic analysis, especially in resource-
constrained environments, remote locations, and onsite 
applications [35]. Compared with conventional short-
read technologies, the long-read capacity of ONT pro-
vides de novo assembly by spanning complex regions 
such as structural variants and repetitive regions to cre-
ate accurate assemblies [36, 37]. This technology is par-
ticularly advantageous for resolving plasmids as single 
contigs [38], enabling the accurate identification of clini-
cally relevant genes, including AMR determinants, viru-
lence factors, and MGEs, thereby providing robust and 
reliable insights for AMR surveillance and other predic-
tions [37, 39]. Additionally, we elected to use the ONT 
rapid chemistry platform because of the unique trans-
posase-mediated cutting of chromosome and plasmid 
DNA and attachment of adapters, resulting in 100% MDR 
detection in chromosomes and plasmids. Notably, to the 
best of our knowledge, this marks the first instance of an 
in-house-developed full pipeline covering bench work to 
bioinformatics in Sri Lanka for AMR surveillance.

The intrinsic resistance of Enterobacter species is coor-
dinated by key genetic elements, shedding light on their 
importance and the alarming challenges they pose. In 

Fig. 7  Genome map of Strain 02. Panel A shows the 4.8 Mb bacterial chromosome, while Panels B – D display plasmids ranging in size from 8 
to 171 kb. Antibiotic resistance genes are highlighted in red. The circular maps were generated by uploading the annotated GenBank file (from 
Galaxy) into the CGView/Proksee genome visualization tool
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this context, the acrAB gene, encoding an efflux pump 
that functions as a molecular bouncer, actively removes 
a diverse array of antibiotics from bacterial cells, and this 
process is regulated by local regulators such as acrR and 
global regulators such as marA, soxS, and ramA [40, 41]. 
Notably, our study revealed the presence of the ramA 
gene within the chromosome of Strain 01. CARD-based 
ABRicate analysis detected the chromosomal ramA gene 
in Strain 01, which encodes a regulatory gene involved 
in multidrug resistance mechanisms. These intrinsic 
traits may not always be flagged by the ResFinder data-
base alone, which is primarily curated to detect acquired 
resistance genes, typically plasmid-borne or horizontally 
transferred genes.

Furthermore, the presence of beta-lactam resistance 
determinant genes, including blaCMH-1, blaCTX-M-15, 
blaACT-25, blaNDM-4, blaOXA-1, and blaTEM-1, in 
these isolates aligns with previous findings [42, 43]. 
Extended-spectrum beta-lactamases (ESBLs) are a 
group of beta-lactamase enzymes that confer resistance 
to beta-lactams, including penicillin; first-, second-, and 
third-generation cephalosporins; and monobactams (e.g., 
aztreonam) [44–46]. The presence of ESBLs is associated 
with the expression of SHV, TEM, and CTX-M enzymes 
encoded by some blaSHV variants (e.g., SHV-2, SHV-5), 
blaTEM variants (e.g., TEM-4, TEM-5, TEM-10, TEM-
12, TEM-30), and blaCTX-M genes, respectively [44, 46]. 
The blaCTX-M-15 gene, which is the most widespread 
and clinically significant subgroup of ESBLs [47, 48], was 
identified in Strains 2, 3, and 4 in this study. ESBL genes 
can be commonly found in both the chromosomes and 
plasmids of species within the Enterobacteriaceae family 
[44], and in our study, the blaCTX-M-15 gene is located 
on plasmids, which can be easily transferred between 
bacteria, leading to the rapid spread of resistance. The 
rise of ESBL-producing genes is associated with wide-
spread resistance to multiple drugs, presenting a sig-
nificant obstacle in the treatment of infections [48]. In 
clinical settings, particularly in the human context, the 
finding of carbapenem resistance is the most concerning 
aspect [49]. Identifying such specific genes via in-depth 
genomic analysis, such as nanopore sequencing, has a 
significant advantage over routine PCR [26].

The World Health Organization (WHO) has pub-
lished a list of the most threatening bacteria with emer-
gent AMR, categorizing them into 3 priority groups on 
the basis of urgency for new antibiotics: critical, high, 
and medium [50]. Among these, Carbapenem-resist-
ant Enterobacterales (CRE) are classified within critical 
groups of priority [51]. CRE has been reported in various 
countries, including Spain, Australia, the United States, 
India, Korea, and China [52]. Among the three types of 
carbapenemases, the emergence of Ambler class B New 

Delhi metallo-β-lactamase (blaNDM-1) is a critical issue 
worldwide [53]. The detection of IncX3 plasmid-medi-
ated blaNDM-4 and blaNDM-15, which are variants 
of blaNDM-1, in this study highlights the spread of the 
blaNDM gene within Sri Lankan dairy farms. This find-
ing suggests the potential of blaNDM-carrying plasmids 
or bacteria to be transmitted from livestock to the envi-
ronment via manure [54, 55].

Enterobacter species exhibit resistance to quinolones 
through mutations in gyrA and parC, which encode sub-
units of DNA gyrase and topoisomerase IV [56]. These 
alterations disrupt the binding of quinolone antibiotics, 
subsequently reducing their efficacy [57]. Plasmid-medi-
ated resistance was observed in our study, particularly 
with the identification of QnrB17, which contributes to 
fluoroquinolone resistance. Because Qnr genes alone 
are known to confer only low-level resistance, annota-
tion using Prokka identified both gyrA and parC genes 
within our assemblies without mutations of gyrA [codons 
83 (Ser83) and 87 (Asp87)] and parC [codons 80 (Ser80) 
or 84 (Glu84)] genes. This suggests that quinolone resist-
ance is genetically unlikely in these isolates.

Additionally, aminoglycoside resistance mechanisms, 
including genes such as AAC(3)-IIe and AAC(6’)-Ib-cr, 
which encode enzymes capable of modifying aminogly-
cosides and rendering them ineffective against bacterial 
resistance, have been identified [57]. Resistance to ami-
noglycosides in Enterobacteriaceae commonly results 
from mobile genes encoding aminoglycoside-modifying 
enzymes (AMEs) that modify sugar moieties, leading to 
aminoglycoside inactivation [58, 59]. Both aac (acety-
lation) and aph (phosphorylation) involve this type of 
modification [58]. Our study further identified genes 
encoding AMEs, APH(3’’)-I, APH(6)-Id, AAC(3)-IIe, and 
AAC(6’)-Ib-cr.

Apart from the findings of intrinsic resistance genes in 
Enterobacteriaceae, the presence of genes such as catII 
(phenicol resistance gene), dfrA14 (diaminopyrimidine), 
determinant of bleomycin resistance, and sul2 (sulfona-
mide) in Strain 02—04 could be attributed to the possibil-
ity that these Enterobacter spp. acquired resistance genes 
from other microorganisms. This is further confirmed by 
the discovery of foreign genetic elements, including ISs, 
Tn, and plasmids, which are indicative of the potential for 
horizontal gene transfer and the acquisition of resistance 
genes in these isolates [43, 60, 61].

Comparative findings of ARGs highlight the differ-
ences in performance between ResFinder and CARD, 
particularly in detecting resistance genes with the nov-
elty and specificity of the studied isolates. ResFinder is 
generally considered more accurate when detecting well-
characterized, clinically relevant, or mobile ARGs [62]. 
The CARD was chosen since it is a more comprehensive 
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database than ResFinder and contains some genes that 
are not clinically relevant and/or mobile and are continu-
ously updated with newly discovered resistance mecha-
nisms [63, 64].

The common structure of the CRISPR/Cas system con-
sists of a CRISPR array, Cas genes, and leader regions. 
These isolates have only CRISPR arrays, which suggests 
that they may have a nonfunctional or putative CRISPR/
Cas system [65]. According to Medina-Aparicio et  al. 
[66], the distribution of the CRISPR/Cas system in the 
Enterobacteriaceae family is not regular and rarely occurs 
in the genus Enterobacter. The variation in CRISPR 
sequences among the different species highlights genetic 
diversity within the Enterobacter species, which could 
reflect differing evolutionary histories and environmental 
pressures.

Mobile genetic elements (MGEs) are frequently situ-
ated on these isolates, and almost all ARGs are situated 
within the ISs (Additional file  10 and Supplementary 
Figs. 8, 9, 10, & 11). Furthermore, most of the ISs identi-
fied (IS110, IS1380, IS3, IS5, IS6, IS30, and ISNCY), with 
the exception of the novel ISs, have previously been doc-
umented in plasmids from enteric bacterial species using 
In silico analysis and the ESKAPE group of organisms 
[43, 67]. Notably, a key player in the evolution of MDR 
plasmids and chromosomal islands in Enterobacteriaceae 
is the Tn3-type transposon, as highlighted in prior stud-
ies [68].

Plasmids are categorized into incompatibility (Inc) 
groups on the basis of their ability to coexist within the 
same bacterial isolate. Incompatibility arises when two 
plasmids with the same replication machinery and con-
trol systems are present in the same cell, interfering with 
their replication and maintenance [69]. Plasmids within 
the same Inc. group are therefore incompatible and can-
not coexist in a single host. Among Enterobacterales, 
twenty-seven major plasmid incompatibility groups are 
associated with ARGs, with IncF, IncA/C, and IncX plas-
mids being the most prevalent in carbapenemase pro-
duction [70]. Incompatibility arises only when separate 
plasmids with the same replicon types attempt to coexist 
within the same host cell. In our study, we identified plas-
mids without multiplicity within each isolate according 
to the coverage of the assembly (Additional file 3). There-
fore, the identification of a multireplicon IncF plasmid 
alongside a separate IncX3 plasmid within the same bac-
terial isolate in our study suggests that these plasmids rely 
on different mechanisms of replication and maintenance. 
This allows them to coexist without triggering incompat-
ibility, as their replication systems do not interfere with 
one another. The coexistence of these plasmids within 
the same cell highlights their compatibility, enabling the 
stable maintenance of both plasmids and the potential 

for efficient dissemination of antimicrobial resistance 
genes. Moreover, we identified plasmids containing two 
replicons, IncFIB (pECLA) and IncFII (pECLA), within 
the same plasmid. The coexistence of these replicons on 
a single plasmid does not trigger incompatibility because 
they are integrated into the same DNA molecule, form-
ing a multireplicon plasmid. Notably, certain transmis-
sible plasmids, particularly those classified into IncI and 
IncF groups, have been previously shown to play pivotal 
roles in facilitating the transmission of resistance [68]. 
We identified IncF plasmids in our study. Additionally, 
IncX3 plasmids, which are primarily found in Enterobac-
teriaceae, are characterized by their narrow host range. 
They exhibit notable features such as high conjugation 
ability, high stability, and negligible fitness costs [71]. 
According to Wang et  al., IncX3 plasmids can be effi-
ciently transferred to multiple Enterobacterial species at 
frequencies similar to or higher than those of their stud-
ied IncFII plasmid-carrying blaCTX-M isolate [72].

In addition to these findings, the whole genomes of all 
the isolates contained 25–31% hypothetical proteins out 
of the total CDS. As described in the literature, nearly 
30% to 40% of genes of most bacterial genomes are 
classified as unknown or hypothetical in several stud-
ies [73–75]. Additionally, genome-level comparison of 
strains 2–4 using D-GENIES dot plot analysis to assess 
the extent of sequence similarity revealed a high degree 
of genomic similarity, with > 75% of the sequences align-
ing at an identity of more than 99%, indicating that these 
genomes are nearly identical.

Although portable sequencing technologies such as 
ONT and open-source workflow platforms are becom-
ing more widely available, resource-constrained settings 
and LMICs in general still face many obstacles. The main 
limitations in our study were the difficulty in obtain-
ing third-party consumables from a single supplier, the 
lengthy documentation required for customs clearance, 
the maintenance of the cold chain for ONT supplies 
from the entry airport to the end-user facility, and slow 
internet speed. Some ONT supplies require refrigeration, 
whereas the rest are shipped frozen. This adds a substan-
tial premium on shipping and handling costs. Notably, 
accurate quantification of very high-quality genomic 
DNA is critical to ensure sufficient depth of coverage to 
achieve the desired results. This is a major challenge in 
our setting, as commercial DNA extraction kits are very 
expensive, and the extraction and quantification process 
require substantial laboratory support. Similarly, an unin-
terrupted power supply is critical for the entire WGS run. 
While this study did not systematically capture detailed 
antibiotic usage practices at different farms, integrating 
such details in future investigations would strengthen 
the reliability and stability of the observed relationship 
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between antimicrobial use and the abundance of AMR 
species at each farm, particularly high-risk groups such 
as ESKAPE pathogens. Also, the small sample size used 
in this study may have limited the potential for detecting 
a wider range of species. A bigger sample size, particu-
larly from additional farms, could have provided higher 
statistical power, revealing additional species and making 
the study more robust. Moreover, long-read-only sample 
assembly might allow artifacts to build up the genome 
in the wrong way with annotation results. This approach 
would support more targeted and evidence-based inter-
ventions. Overall, we were able to develop a rapid screen-
ing platform comprising in-house WGS coupled with 
comprehensive genomic analyses employing scalable and 
cost-effective solutions that can be used for AMR surveil-
lance in resource-limited settings such as LMICs.

Conclusion
Oxford Nanopore WGS with open-source Galaxy soft-
ware and KNIME analytics platform processing is a 
potentially feasible option for AMR surveillance in 
resource-limited LMICs. This approach generated high-
quality genomic data, rapidly identified the presence of 
the ESKAPE pathogen Enterobacter spp., and captured 
the entire resistome using a minimum sample number. 
To the best of our knowledge, this is the first in-house 
whole-genome analysis workflow in the country tai-
lored for AMR surveillance. The presence of potentially 
pathogenic high-MIC, MDR Enterobacter spp. with wide 
resistomes, including the blaNDM gene, emphasizes the 
urgent need to address AMR in animal production facili-
ties within a one-health framework. The identification of 
carbapenem resistance genes such as blaNDM, virulence 
genes, and MGEs, including novel arrangements of inser-
tion sequences, shows the ability of WGS to capture evo-
lutionary and epidemiological trends in AMR spread.

Methods
Sample collection
Fifteen farms from five veterinary ranges (three farms 
per range) in the Kandy district of the Central Province 
(Kundasale, Teldeniya, Galaha, Gangawatakorale, and 
Gampola) were selected on the basis of the recommen-
dation of the Provincial Director of Veterinary Services. 
Three small-scale dairy farms within each range were 
selected for convenient sampling using sterile dispos-
able gloves in clean plastic bags. Composite dung sam-
ples were collected from each farm. Approximately 300 g 
of fresh dung samples were collected from six locations 
from each farm, combined, and thoroughly mixed, and 
approximately 100  g of the composite sample was col-
lected into sterile polythene bags and transported to the 
laboratory on ice.

Screening for antibiotic‑resistant bacteria
Initial screening was conducted on a 96-well plate-based 
assay in the presence of amoxicillin. The amoxicillin/
penicillin group is the most commonly used antibiotic on 
dairy farms in Sri Lanka [20, 76].

Composite dung samples were thoroughly mixed, 1  g 
was suspended in 10  mL of sterile water, and tenfold 
serial dilutions were prepared using sterile water. In the 
pilot study, 25 µL of 10–2 diluted dung suspension was 
added to quadruplicate wells of 96-well plates contain-
ing 100 µL of nutrient broth with and without 50  µg/
mL amoxicillin (Sterling Lab, India). Quadruplicate wells 
without samples and without antibiotics were used as 
sterility controls.

After the plate was incubated for 24 h at room temper-
ature, the optical density was measured via a microplate 
reader (Thermo Scientific Multiskan FC) at 620 nm.

Isolation of amoxicillin‑resistant bacteria 
and determination of minimum inhibitory concentrations 
(MICs)
The samples that had grown in the presence of amoxi-
cillin in the 96-well plate assays were inoculated onto 
nutrient agar plates containing 50 µg/mL amoxicillin and 
incubated at 37  °C for 24  h. The isolated colonies were 
subcultured onto nutrient agar plates to obtain pure cul-
tures. The inoculum was prepared from the pure cultures 
by suspending the isolated colonies in sterile distilled 
water, and the concentration was adjusted to 0.5 McFar-
land standard. The MIC for amoxicillin was determined 
via the micro broth dilution method [77, 78].

Identification of the isolates and determination of AMR 
profiles
The isolates with the highest MICs for amoxicillin were 
partially characterized via Gram staining, motility test-
ing, and conventional biochemical methods (indole, 
methyl red, Voges–Proskauer, citrate, urease, hydrogen 
sulfide, lactose, sucrose, mannitol and xylose fermenta-
tion according to standard protocols) [79]. The isolates 
with the highest MICs for amoxicillin were further char-
acterized by determining the AMR for multiple drug 
classes of amoxicillin [10  µg (β lactams)], ciprofloxa-
cin [5  µg (quinolone)], chloramphenicol [30  µg (pheni-
cols)], gentamicin [10  µg (aminoglycoside)], tetracycline 
(30  µg) and trimethoprim/sulfamethoxazole (25  µg)] 
via the Kirby–Bauer disk diffusion method according to 
EUCAST 2022 guidelines.

High molecular weight (HMW) DNA extraction
DNA was extracted from 10  mL of overnight (37  °C) 
nutrient agar broth cultures using the QIAamp DNA 
Mini Kit (Qiagen: Chadstone, Victoria, Australia) 
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according to the manufacturer’s instructions. The purity 
and concentration of the DNA were measured via a Nan-
odrop ND-2000—OD 260  nm/280  nm of 1.8 and OD 
260  nm/230  nm of 2.0–2.2. The average fragment size 
greater than 10 kb was analyzed via a low percentage aga-
rose gel (see Additional file 12).

Library preparation, sequencing, and read processing
The MinION sequencing libraries with 400  ng of DNA 
input each were prepared with the Rapid Barcoding 
Sequencing Kit (SQK-RBK004). Briefly,  7.5  μl of 400  ng 
of template DNA was mixed with 2.5  μl of Fragmenta-
tion Mix RB01-12,  and the tube was  incubated at 30  °C 
for 1  min and then at 80  °C for 1  min. All the barcoded 
samples were pooled, and 1  µl of Rapid Adapter (RAP) 
was added to 10 µl of barcoded DNA, followed by incuba-
tion for 5 min at room temperature. The sequencing was 
performed in a portable MinION sequencing device with 
MinION R9.4.1 flow cells. Sequencing was started with 
MinKNOW™ software,  and was used to perform base-
calling and barcode demultiplexing during sequencing 
and through post run analysis. The generated FASTQ-pass 
reads were sent through the EPI2ME workflow to align 
the sequences and identify antibiotic resistance genes in 
real time. Reagents, flow cells, MinION sequencing device 
MinKNOW™ and EPI2ME software were sourced through 
ONT (Littlemore, Oxford, United Kingdom), and all 
sequencing and data analyses were carried out in-house.

Real‑time taxonomy identification
Primary acquisition of data and real-time base calling were 
carried out via the graphical user interface MinKNOW™, 
v. 4.5.5. The demultiplexing of barcodes, quality control of 
the reads, and assignment of taxonomy via WIMP were 
also accomplished in real time via the EPI2ME platform. 
All quality reads (quality score above 8) were extracted 
after 23 h and 10 min of sequencing for downstream anal-
ysis. The WIMP results were subsequently analyzed by 
assigning a threshold value of ≥ 750,000 scores via KNIME 
analytics platform (Supplementary Fig. 12).

Genome assembly, annotation, and resistome detection
Galaxy bioinformatics tools were used to assemble the 
genome with ONT reads (https://​usega​laxy.​org/) (the 
complete workflow in Galaxy is shown in Supplementary 
Fig.  13). Preprocessing of FASTQ files was conducted 
via Porechop v. 0.2.4 [80] and fastp v. 0.23.4 [81, 82] with 
default parameters. De novo assembly was performed 
via Flye v. 2.9 [83, 84] by specifying the input as Nano-
pore reads-Nanopore corrected to a minimum coverage 
of ~ 30X, and Bandage v.0.8.1 [85] was used to visualize 
the assemblies. Further polishing and error correction 
of the genome assemblies were conducted via Racon 

v. 1.5.0 with default parameters and Medaka v. 1.12.1 
[86, 87] by specifying the final polishing with the model 
r941_min_fast_g507. The completeness and contiguity 
of the de novo assemblies were evaluated via QUAST v. 
5.0.2 [88, 89] and BUSCO v. 5.5.0 [90]. The locations of 
the acquired antibiotic resistance genes were determined 
via ABRicate v. 1.0.1 from ResFinder and CARD [91]. 
The genomes were annotated via the rapid annotation 
software Prokka v. 1.14.6, which provided a list of genes 
[92, 93]. ONT FASTQ sequencing data have been depos-
ited at the National Center for Biotechnology Informa-
tion (NCBI) under Bioproject ID PRJNA1102716 in the 
Sequence Read Archive (SRA) (www.​ncbi.​nlm.​nih.​gov/​
sra/). The corresponding accession numbers are as fol-
lows: Strain 01 (SRR28762089), Strain 02 (SRR28762092), 
Strain 03 (SRR28762091), and Strain 04 (SRR28762090). 
Additionally, assembly files and associated annotated 
data are also available under the above bioproject ID. The 
accession numbers are as follows: Strain 01 (CP165725), 
Strain 02 (CP171250-CP171253), Strain 03 (CP178584-
CP178587), and Strain 04 (CP171246-CP171249).

Additional genomic analyses
Virulence genes were determined via ABRicate v. 1.0.1 
VFDB (Virulence Factor Database) [91], and plasmids 
were identified via plasflow v.1.1.0 PlasmidFinder v. 
2.1.6 and staramr v. 0.7.2 [94–96]. For precise k-mer 
alignments and taxonomic classification on the basis of 
genomes and plasmid databases, Kraken2 v. 2.1.3 [97] 
was employed. An additional taxonomic classification 
was performed using GTDB-Tk v2.4 with default param-
eters [98]. The clustered regularly interspaced short pal-
indromic repeats (CRISPR)/Cas system was identified via 
CRISPRCasFinder v. 1.1.2 [99]. Subsequently, the spacer 
sequences were aligned against the E. cloacae and E. hor-
maechei genome sequences deposited in the National 
Center for Biotechnology Information (NCBI) Gen-
Bank via the NCBI BLAST algorithm. Resistance genes 
and megaplasmid contigs were subjected to BLASTn 
analysis against the NCBI database to discern whether 
resistance genes, plasmid sequences, and taxonomy iden-
tification have previously been reported. For visualiza-
tion of whole-genome sequences, CGView/Proksee was 
employed [100]. This comprehensive approach allowed 
for the identification of virulence factors, plasmids, and 
resistance genes, along with taxonomic classification 
and visualization of the genomic context. MGEs were 
detected via ISEScan v1.7.2.3 [101], and the ISFinder 
[102] database (https://​isfin​der.​bioto​ul.​fr/) was used to 
identify transposable elements and their inverted repeat 
sequences. Additionally, we performed a genome-level 
comparison of strains 2–4 using D-GENIES v2 dot plot 
analysis to assess the extent of sequence similarity [103].

https://usegalaxy.org/
http://www.ncbi.nlm.nih.gov/sra/
http://www.ncbi.nlm.nih.gov/sra/
https://isfinder.biotoul.fr/
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